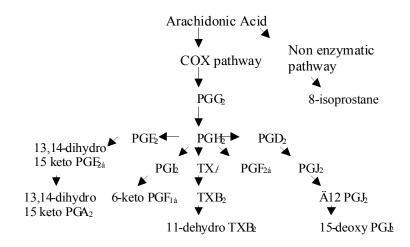


UHPLC (X-LC®) APPLICATION NOTE 01-09

Rapid Profiling of Prostanoids

Rapid Profiling of Prostanoids in Biological Samples using the JASCO X-LC® system

Deepti Varma, Dr. Susan Jansen, Temple University, Philadelphia, PA Atsushi Tsukamoto, JASCO


Introduction

Inflammation is implicated in number of diseases including, hypertension¹, ischemic heart injury² rheumatoid arthritis³ and atherosclerosis⁴. Therefore, a mechanistic understanding of the inflammation process at the molecular level would contribute to the mechanism of the disease state, injury and recovery. Eicosanoids are specific biomarkers for inflammation⁵ Arachidonic acid (AA) which is an omega-6 polyunsaturated fatty acid can undergo oxidative metabolism by cyclooxygenase (COX), lipoxygenase (LOX) or cytochrome (P450) to produce a number of these inflammatory lipid biomolecules. The oxidation of AA by COX-2 results in a number of prostanoids which include PGE₂, PGD₂ and PGF₂, PGJ₂, prostacyclin (PGI₂) and thromboxane A₂ (TXA₂)⁶. Prostacyclin is considered to be a potent vasodilator whereas thromboxane A2 is considered to be a potent vasoconstrictor. PGI2 and TXA2 are unstable at physiological pH and are readily converted to 6-keto $PGF_{1\alpha}$ and 11-dehydro TXB_2 respectively. Hence these are considered to be reliable for the in vivo estimation of PGI₂ and TXA₂ respectively. PGE₂, PGD₂ and PGF₂ are considered to be pro inflammatory biomarkers.13, 14 -dihydro-15-keto PGE₂ and 13, 14 -dihydro-15keto PGA2 are major metabolites of PGE2 in plasma.15-deoxy PGJ₂ which is the major metabolite of PGJ₂ is thought to have anti inflammatory properties especially in rheumatoid arthritis. Free radical peroxidation of AA produces a series of prostaglandin like compounds known as the isoprostanes' of which F₂ isoprostane which are PGF₂ like compounds is considered to be the most important.8-iso PGF₂ also known as 8-isoprostane the most abundant form of the F₂ isoprostane is considered to be an indicator of in vivo oxidative stress⁸. Figure 1 shows the understood pathways for the metabolism of arachidonic acid.

This application note describes a 6.8 min method for identifying a mixture of 9 prostanoids using Jasco X-LC. Separation of these compounds using conventional HPLC typically takes around 21 minutes.

Figure 1: Arachidonic acid metabolism by COX-2 and non-enzymatic pathway.

Experimental

Sample Preparation:

8-iso PGF₂ was supplied in methanol with a stock mass concentration of 1 mg/ml and 13, 14 –dihydro-15-keto PGE₂ and 13, 14 –dihydro-15-keto PGA₂ were supplied in methyl acetate with a stock mass concentration of 1 mg/ml. All the other prostanoids were dissolved in 1 ml methanol such that the stock mass concentration for all was 1mg/ml. Working standards for the analytes were prepared by serial dilution using ACN.

X-LC system and operating conditions:

System: Jasco X-LC

Mobile Phase A: 0.1 % Formic Acid

Mobile Phase B: ACN Flow Rate: 0.2 ml/min

Gradient:

Time (min)	%B
0.0	35
4.0	35
6.0 90	
6.5	90
6.6	35
6.8	35

Injection Volume: 2µl

Stationary Phase:

Column: Restek Pinnacle DB C₁₈ 1.9μm (50*2.1 mm) Column Temperature: 25°C

UV Detection:

Time (min)	Wavelength (nm)
0.0	220
1.0	196

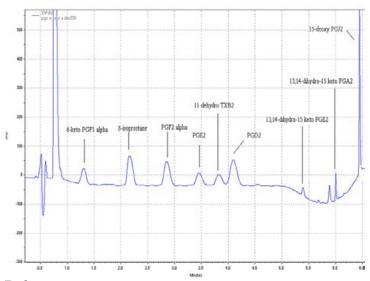

Results and Discussion:

Table 1 provides a list of the compounds from the method and figure 1 shows an X-LC chromatogram of a standard mixture of prostanoids (150 ng each). The compounds are separated by a gradient elution of 0.1 % formic acid and acetonitrile on a Restek Pinnacle DB C_{18} 1.9 μ m (50*2.1 mm) at a flow rate of 0.2 ml/min.

Table 1: Prostanoids from Arachidonic Acid metabolites from the COX-2 pathway and a non-enzymatic pathway.

Compound Name	Symbol	RT (min)
6-keto-Prostaglandin- $F_{1\alpha}$	6-keto $PGF_{1\alpha}$	1.25
8-isoprostane	8-iso $PGF_{2\alpha}$	2.25
Prostaglandin $F_{2\alpha}$	$PGF_{2\alpha} \\$	2.88
Prostaglandin E ₂	PGE_2	3.49
11-dehydro Thromboxane B ₂	11-dehydro TXB ₂	3.86
Prostaglandin D ₂	PGD_2	4.18
13,14-dihydro-15 keto Prostaglandin E ₂	13,14-dihydro-15 keto PGE ₂	5.43
13,14-dihydro-15 keto Prostaglandin A ₂	13,14-dihydro-15 keto PGA ₂	6.01
15-deoxy Prostaglandin J ₂	15-deoxy PGJ ₂	6.48

Figure 1: X-LC Chromatogram of Prostanioids from Table 1.

References:

Jian- Jun, Li et al, Medical Hypotheses, 2005, 64, 236-240.

Mehta, J. L. and Li DY, Cardiovascular Research, 1999, 43(2), 291-299.

Yasunori Tsubouchi et al, Biochemical and Biophysical Research Commun, 2001, 283,750-755

Libby, P. et al, Inflammation and Atherosclerosis, Circulation, 2002:105,1135-1143.

Deems R; Buczynski M et al, methods in Enzymology,2007,432,59-82

Smith WL et al, Annu. Rev Biochem, 2000, 69,145-182

Morrow JD, et al, Proc. Natl. Acad. Sci. USA, 1990, 87, 9383-9387

Morrow JD, Roberts LJ, Free Radical Biology and Medicine, 2000,28,505-513

www.jascoinc.com